Solution to Assignment 4

Supplementary Problems

1. Let D be a region lying on the first quadrant and Ω the solid obtained by rotating D around the y-axis. Show that the volume of Ω , $|\Omega|$, is given by the formula

$$|\Omega| = |D|d ,$$

where |D| is the area of D and d is the distance traveled by the centroid of D. Suggestion: Back to the Riemann sums.

Solution. Let *P* be a partition on *D*. Using standard notations, the Riemann sum $\sum_{j,k} 2\pi x_j^* \Delta x_j \Delta y_k$ (where (x_j^*, y_k^*) is a tag point in R_{jk}) approximates the volume of Ω . Taking limits, we have

$$\begin{aligned} |\Omega| &= \iint_D 2\pi x \, dA \\ &= 2\pi |D| \frac{1}{|D|} \iint_D x dA \\ &= 2\pi \overline{x} |D| \; . \end{aligned}$$

The term $d = 2\pi \overline{x}$ is the distance traveled by the centroid. This result is called Theorem of Pappus.